Research Article
Abstract
References
Information
In recent years, increasing extreme weather events have further escalated the risk of landslides. Since the landslide leads to serious loss of human life and property, it is very important to evaluate such risks in advance. The recent advancements in active remote sensing methods have made it easier to access more accurate and detailed surface displacement and rainfall data. However, there have been few works of using such actively remote sensed datasets. Therefore, this study attempts to suggest a machine learning model to predict landslide susceptibility using InSAR (Interferometric SAR) displacement data and HSR (Hybrid Surface Rainfall) estimates as inputs for machine learning models. Moreover, we evaluate the influence of predictor variables for landslide susceptibility systematically by utilizing a SHAP (SHapley Additive exPlanations) model as an interpretable machine learning approach, which has the strength of overcoming a black-box problem with general machine learning models. As a result of case study for Uljin-gun, Gyeongsangbuk-do, XGBoost shows the best predictive performance for landslides and predictor variables such as distance from roads, elevation, maximum daily rainfall intensity, vegetation index, 48 hours accumulated antecedent rainfall, slope, terrain wetness, distance from fault-line, absolute value of surface displacement, and distance from rivers on landslide prediction are identified as key factors for influencing landslide prediction. In particular, rainfall intensity and the absolute value of surface displacement obtained from active remote sensing are contributed to a higher probability of landslide occurrence. This study would be significant in the sense that it presents the applicability of active remote sensed data for landslide susceptibility analysis through the empirical examination. Also, spatially and temporally changing landslide susceptibility based on such actively sensed data could be effectively utilized for landslide monitoring.
최근 늘어나고 있는 이상 기상 현상으로 산사태 위험이 점차 증가하고 있다. 산사태는 막대한 인명 피해와 재산 피해를 초래할 수 있기에 이러한 위험을 사전에 평가함은 매우 중요하다. 최근 기술 발전으로 인해 능동형 원격탐사 방법을 사용하여 더 정확하고 상세한 지표 변위 및 강수 데이터를 얻을 수 있게 되었다. 그러나 이러한 데이터를 활용하여 산사태 예측 모델을 개발하는 연구는 찾기 힘들다. 따라서 본 연구에서는 합성개구레이더 간섭법(InSAR)을 사용한 지표 변위 자료와 하이브리드 고도면 강우(HSR) 추정 기법을 통한 강수 정보를 활용하여 산사태 민감도를 예측하는 기계학습 모델을 제시하고 있다. 나아가 기계학습의 블랙박스 문제를 극복할 수 있는 해석가능한 기계학습 방법인 SHAP을 이용하여 산사태 민감도의 영향 변수에 대한 중요도를 체계적으로 평가하였다. 경상북도 울진군을 대상으로 사례 연구를 수행한 결과, XGBoost가 가장 좋은 예측 성능을 보이며, 도로로부터의 거리, 지표 고도, 일 최대 강우 강도, 48시간 선행 누적 강우량, 사면 경사, 지형습윤지수, 단층으로부터의 거리, 경사도, 지표 변위, 하천으로부터의 거리가 산사태 예측에 영향을 미치는 주요 변수로 밝혀졌다. 특히, 능동형 원격탐사를 통해 얻은 자료인 강우 강도와 지표 변위의 절댓값이 높을수록 산사태 발생 확률이 높음을 확인하였다. 본 연구는 능동형 원격탐사 자료의 산사태 민감도 연구에서의 활용 가능성을 실증적으로 보여주고 있으며, 해당 자료를 바탕으로 시공간적으로 변하는 산사태 민감도를 도출함으로써 향후 산사태 민감도 모니터링에 효과적으로 활용될 수 있을 것으로 기대된다.
- 강경희・박혁진, 2019, “Random Forest 기법을 이용한 산사태 취약성 평가 시 훈련 데이터 선택이 결과 정확도에 미치는 영향,” 자원환경지질, 52(2), 199-212. https://doi.org/10.9719/eeg.2019.52.2.19910.9719/eeg.2019.52.2.199
- 권혁재, 1997, 「자연지리학」, 제2판, 파주: 법문사.
- 권혁재, 1999, 「지형학」, 제4판, 파주: 법문사.
- 기상레이더센터, 2014, 「범부처 융합 이중편파레이더 활용기술 개발」.
- 노용훈・장기호・차주완・이철규・류근혁, 2022, “수도권 지역 집중호우 사상에 대한 이중편파 레이더의 관측 특성 분석,” 한국방재학회논문집, 22(1), 21-32. https://doi.org/10.9798/KOSHAM.2022.22.1.21 10.9798/KOSHAM.2022.22.1.21
- 류근수・정성화・오영아・박홍목・이규원, 2017, “기상청 기상레이더 관측망을 이용한 합성 하이브리드 고도면 강우량(HSR)의 정확도 검증,” 한국지구과학회지, 38(7), 496-510. https://doi.org/10.5467/JKESS.2017.38.7.496 10.5467/JKESS.2017.38.7.496
- 산림청 산사태방지과, 2022, 「2022년 전국 산사태예방 종합대책」.
- 산림청 산사태방지과, 2023, 「2023년 전국 산사태예방 종합대책」.
- 송창호・이지성・김윤태, 2021, “심층 신경망을 이용한 산사태 민감도 분석,” 한국방재학회논문집, 21(3), 141-150.
- 신원정・김종연, 2022, “풍화 산지에서 토사 재해 발생에 영향을 미친 요소들에 대한 연구-2020 년 충청북도 북부지역을 사례로,” 한국지형학회지, 29(3), 1-20. http://dx.doi.org/10.16968/JKGA.29.3.1 10.16968/JKGA.29.3.1
- 안소정・최윤・손명재・김광호・정성화・박영연, 2021, “기상레이더 강수 합성데이터를 활용한 심층신경망 기반 초단기 강수예측 기술 연구,” 한국정보통신학회 종합학술대회 논문집, 25(1), 43-45.
- 알-마문, 장동호, 박종철, 2017, “산사태 분포 예측을 위한 로지스틱, 베이지안, Maxent의 비교,” 한국지형학회지, 24(2), 91-101. http://dx.doi.org/10.16968/JKGA.24.2.91 10.16968/JKGA.24.2.91
- 오재영・함도현・이용건・김기백, 2019, “XGBoost 기법을 이용한 단기 전력 수요 예측 및 하이퍼파라미터 변화에 따른 영향 분석,” 전기학회논문지, 68(9), 1073-1078. https://doi.org/10.5370/KIEE.2019.68.9.1073 10.5370/KIEE.2019.68.9.1073
- 윤석・이승래・강신항・박도원, 2015, “통계 분석을 통한 산사태 토석류 전이규준 모델,” 한국지반공학회논문집, 31(6), 59-69. http://dx.doi.org/10.7843/kgs.2015.31.6.59 10.7843/kgs.2015.31.6.59
- 윤순옥・기근도・김종연・김창환・김태호・박경・박수진・변종민・이광률・성영배・황상일 역, 2013, 「지형학 원리」, 제3판, 서울: 시그마프레스(Huggett, R.J., 2011, Fundamentals of Geomorphology, New York: Routledge).
- 이제만・서정일・이진호・임상준, 2021, “땅밀림 위험지 평가를 위한 기계학습 분류모델 비교,” 한국산림과학회지, 110(4), 610-621. https://doi.org/10.14578/jkfs.2021.110.4.610 10.14578/jkfs.2021.110.4.610
- Khodadad, S.・장동호, 2015, “말레이시아 페낭섬의 산사태 민감도 지도작성-AHP와 OLS 기법을 이용하여,” 한국지형학회지, 22(1), 109-121. http://dx.doi.org/10.16968/JKGA.22.1.9 10.16968/JKGA.22.1.9
- Aas, K., Jullum, M., and Løland, A, 2021, Explaining individual predictions when features are dependent: More accurate approximations to Shapley values, Artificial Intelligence, 298, 103502. https://doi.org/10.1016/j.artint.2021.103502 10.1016/j.artint.2021.103502
- Aditian, A., Kubota, T., and Shinohara, Y., 2018, Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia, Geomorphology, 318, 101-111. https://doi.org/10.1016/j.geomorph.2018.06.006 10.1016/j.geomorph.2018.06.006
- Akgun, A., 2012, A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey, Landslides, 9(1), 93-106. https://doi.org/10.1007/s10346-011-0283-7 10.1007/s10346-011-0283-7
- Ali, M.Z., Chu, H.J., Chen, Y.C., and Ullah, S., 2021, Machine learning in earthquake-and typhoon-triggered landslide susceptibility mapping and critical factor identification, Environmental Earth Sciences, 80, 1-21. https://doi.org/10.1007/s12665-021-09510-z 10.1007/s12665-021-09510-z
- Althuwaynee, O.F., Asikoglu, O., and Eris, E., 2018, Threshold contour production of rainfall intensity that induces landslides in susceptible regions of northern Turkey, Landslides, 15, 1541-1560. https://doi.org/10.1007/s10346-018-0968-2 10.1007/s10346-018-0968-2
- Althuwaynee, O.F., Pradhan, B., and Ahmad, N., 2015, Estimation of rainfall threshold and its use in landslide hazard mapping of Kuala Lumpur metropolitan and surrounding areas, Landslides, 12, 861-875. https://doi.org/10.1007/s10346-014-0512-y 10.1007/s10346-014-0512-y
- Arora, M.K., Das Gupta, A.S., and Gupta, R.P., 2004, An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas, International Journal of Remote Sensing, 25(3), 559-572. https://doi.org/10.1080/0143116031000156819 10.1080/0143116031000156819
- Ayele, S., Raghuvanshi, T.K., and Kala, P.M., 2014, Application of Remote Sensing and GIS for Landslide Disaster Management: A Case from Abay Gorge, Gohatsion-Dejen Section, Ethiopia, in Singh, M., Singh, R. and Hassan, M. eds., Landscape Ecology and Water Management. Advances in Geographical and Environmental Sciences, Tokyo: Springer. https://doi.org/10.1007/978-4-431-54871-3_2 10.1007/978-4-431-54871-3_2
- Ba, Q., Chen, Y., Deng, S., Yang, J., and Li, H., 2018, A comparison of slope units and grid cells as mapping units for landslide susceptibility assessment, Earth Science Informatics, 11, 373-388. https://doi.org/10.1007/s12145-018-0335-9 10.1007/s12145-018-0335-9
- Basu, I. and Maji, S., 2022, Multicollinearity Correction and Combined Feature Effect in Shapley Values, in Long, G., Yu, X., Wang, S. eds., AI 2021: Advances in Artificial Intelligence, Cham: Springer, 13151, 79-90. https://doi.org/10.1007/978-3-030-97546-3_7 10.1007/978-3-030-97546-3_7
- Bopche, L. and Rege, P.P., 2022, Landslide susceptibility mapping: an integrated approach using geographic information value, remote sensing, and weight of evidence method, Geotechnical and Geological Engineering, 40(6), 2935-2947. https://doi.org/10.1007/s10706-022-02070-4 10.1007/s10706-022-02070-4
- Brabb, E.E., 1984, Innovative approaches to landslide hazard mapping, Proceeding, 4th International Symposium on Landslides, 307-323.
- Brand, E.W., Premchitt, J., and Phillipson, H.B., 1984, Relationship between rainfall and landslides in Hong Kong, Proceeding, 4th International Symposium on Landslides, 1(1), 276-8.
- Calista, M., Miccadei, E., Pasculli, A., Piacentini, T., Sciarra, M. and Sciarra, N., 2016, Geomorphological features of the Montebello sul Sangro large landslide (Abruzzo, Central Italy), Journal of Maps, 12(5), 882-891. https://doi.org/10.1080/17445647.2015.1095134 10.1080/17445647.2015.1095134
- Casagli, N., Intrieri, E., Tofani, V., Gigli, G., and Raspini, F., 2023, Landslide detection, monitoring and prediction with remote-sensing techniques, Nature Reviews Earth & Environment, 4(1), 51-64. https://doi.org/10.1038/s43017-022-00373-x 10.1038/s43017-022-00373-x
- Chen, C., Shen, Z., Weng, Y., You, S., Lin, J., Li, S., and Wang, K., 2023, Modeling Landslide Susceptibility in Forest-Covered Areas in Lin’an, China, Using Logistical Regression, a Decision Tree, and Random Forests, Remote Sensing, 15(18), 4378. https://doi.org/10.3390/rs15184378 10.3390/rs15184378
- Chen, C.W., 2001, Statistical-cost network-flow approaches to two-dimensional phase unwrapping for radar interferometry, Ph.D. Dissertation, Department of Electrical Engineering, Stanford University.
- Chen, C.W. and Zebker, H.A., 2001, Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization, Journal of the Optical Society of America A, 18(2), 338-351. https://doi.org/10.1364/JOSAA.18.000338 10.1364/JOSAA.18.00033811205980
- Chen, C. and Fan, L., 2023, Selection of contributing factors for predicting landslide susceptibility using machine learning and deep learning models, Stochastic Environmental Research and Risk Assessment, 1-26. https://doi.org/10.1007/s00477-023-02556-4 10.1007/s00477-023-02556-4PMC10158711
- Chen, T. and Guestrin, C, 2016, Xgboost: A scalable tree boosting system, Proceedings, the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, the United States, 785-794. http://dx.doi.org/10.1145/2939672.2939785 10.1145/2939672.2939785
- Chen, Z. and Wang, G., 2023, Comparison of empirically-based and physically-based analyses of coseismic landslides: A case study of the 2016 Kumamoto earthquake, Soil Dynamics and Earthquake Engineering, 172, 108009. https://doi.org/10.1016/j.soildyn.2023.108009 10.1016/j.soildyn.2023.108009
- Ciurleo, M., Cascini, L., and Calvello, M., 2017, A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils, Engineering Geology, 223, 71-81. https://doi.org/10.1016/j.enggeo.2017.04.023 10.1016/j.enggeo.2017.04.023
- Closson, D. and Milisavljevic, N., 2017, InSAR Coherence and Intensity Changes Detection, in Beumier, C., Closson, D., Lacroix, V., Milisavljevic, N., and Yvinec, Y. eds., Mine Action - The Research Experience of the Royal Military Academy of Belgium, London: InTech, 154-176. http://dx.doi.org/10.5772/65779 10.5772/65779
- Cortes, C. and Vapnik, V., 1995, Support-vector networks, Machine learning, 20, 273-297. https://doi.org/10.1007/BF00994018 10.1007/BF00994018
- Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D., and Lautenbach, S., 2013, Collinearity: a review of methods to deal with it and a simulation study evaluating their performance, Ecography, 36(1), 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x 10.1111/j.1600-0587.2012.07348.x
- Dzurisin, D. and Lu, Z., 2007, Interferometric synthetic-aperture radar (InSAR), in Dzurisin, D., eds., Volcano Deformation, Berlin: Springer, 153-194. https://doi.org/10.1007/978-3-540-49302-0_5 10.1007/978-3-540-49302-0_5
- Eiras, C.G.S., Souza, J.R.G., Freitas, R.D.A., Barella, C.F., and Pereira, T.M., 2021, Discriminant analysis as an efficient method for landslide susceptibility assessment in cities with the scarcity of predisposition data, Natural hazards, 107, 1427-1442. https://doi.org/10.1007/s11069-021-04638-4 10.1007/s11069-021-04638-4
- Fiaschi, S., Mantovani, M., Frigerio, S., Pasuto, A., and Floris, M., 2017, Testing the potential of Sentinel-1A TOPS interferometry for the detection and monitoring of landslides at local scale (Veneto Region, Italy), Environmental Earth Sciences, 76, 1-13. https://doi.org/10.1007/s12665-017-6827-y 10.1007/s12665-017-6827-y
- Fabbri, A.G., Chung, C.J.F., Cendrero, A., and Remondo, J., 2003, Is prediction of future landslides possible with a GIS?, Natural Hazards, 30, 487-503. https://doi.org/10.1023/B:NHAZ.0000007282.62071.75 10.1023/B:NHAZ.0000007282.62071.75
- Goodbody T.R., Coops N.C., Queinnec M, White J.C., Tompalski P., Hudak A.T., Auty D., Valbuena R., LeBoeuf A., Sinclair I., McCartney G., Prieur J., and Woods M.E., 2023, sgsR: a structurally guided sampling toolbox for LiDAR-based forest inventories, Forestry, 96(4), 411-424. https://doi.org/10.1093/forestry/cpac055 10.1093/forestry/cpac055
- Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P., 1999, Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31(1-4), 181-216. https://doi.org/10.1016/S0169-555X(99)00078-1 10.1016/S0169-555X(99)00078-1
- Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., and Ardizzone, F., 2005, Probabilistic landslide hazard assessment at the basin scale, Geomorphology, 72, 272-299. https://doi.org/10.1016/j.geomorph.2005.06.002 10.1016/j.geomorph.2005.06.002
- Harrison, M., 2019, Machine learning pocket reference: working with structured data in python, Sebastopol: O’Reilly Media.
- Hong, Y., Adler, R., and Huffman, G., 2007, Use of satellite remote sensing data in the mapping of global landslide susceptibility, Natural hazards, 43, 245-256. https://doi.org/10.1007/s11069-006-9104-z 10.1007/s11069-006-9104-z
- Huang, J.C., Milliman, J.D., Lee, T.Y., Chen, Y.C., Lee, J.F., Liu, C.C., Lin, J.C., and Kao, S.J., 2017, Terrain attributes of earthquake‐and rainstorm‐induced landslides in orogenic mountain Belt, Taiwan, Earth Surface Processes and Landforms, 42(10), 1549-1559. https://doi.org/10.1002/esp.4112 10.1002/esp.4112
- Huang, Y. and Zhao, L., 2018, Review on landslide susceptibility mapping using support vector machines, Catena, 165, 520-529. https://doi.org/10.1016/j.catena.2018.03.003 10.1016/j.catena.2018.03.003
- Hung, L.Q., Van, N.T.H., Duc, D.M., Ha, L.T.C., Van Son, P., Khanh, N.H., and Binh, L.T., 2016, Landslide susceptibility mapping by combining the analytical hierarchy process and weighted linear combination methods: a case study in the upper Lo River catchment (Vietnam), Landslides, 13(5), 1285-1301. https://doi.org/10.1007/s10346-015-0657-3 10.1007/s10346-015-0657-3
- Inan, M.S.K. and Rahman, I., 2023, Explainable AI Integrated Feature Selection for Landslide Susceptibility Mapping Using TreeSHAP, SN Computer Science, 4(5), 482. https://doi.org/10.1007/s42979-023-01960-5 10.1007/s42979-023-01960-5
- Intrieri, E., Raspini, F., Fumagalli, A., Lu, P., Del Conte, S., Farina, P., Allievi, J., Ferretti, A., and Casagli, N., 2018, The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data, Landslides, 15, 123-133. https://doi.org/10.1007/s10346-017-0915-7 10.1007/s10346-017-0915-7
- Jorgensen, D.P. and Willis, P.T., 1982, A Z-R Relationship for Hurricanes, Journal of Applied Meteorology, 21(3), 356-366. https://doi.org/10.1175/1520-0450(1982)021%3C0356:AZRRFH%3E2.0.CO;2 10.1175/1520-0450(1982)021%3C0356:AZRRFH%3E2.0.CO;2
- Kang, Y., Zhang, F., Peng, W., Gao, S., Rao, J., Duarte, F., and Ratti, C., 2021, Understanding house price appreciation using multi-source big geo-data and machine learning, Land Use Policy, 111, 104919. https://doi.org/10.1016/j.landusepol.2020.104919 10.1016/j.landusepol.2020.104919
- Kilburn, C.R. and Petley, D.N., 2003, Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy, Geomorphology, 54, 21-32. https://doi.org/10.1016/S0169-555X(03)00052-7 10.1016/S0169-555X(03)00052-7
- Kim, J.C., Lee, S., Jung, H.S., and Lee, S., 2018, Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea, Geocarto international, 33(9), 1000-1015. 10.1080/10106049.2017.1323964
- Lee, J.H., Sameen, M.I., Pradhan, B., and Park, H.J., 2018, Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods, Geomorphology, 303, 284-298. https://doi.org/10.1080/10106049.2017.1323964 10.1080/10106049.2017.1323964
- Ley, C., Martin, R.K., Pareek, A., Groll, A., Seil, R., and Tischer, T., 2022, Machine learning and conventional statistics: making sense of the differences, Knee Surgery, Sports Traumatology, Arthroscopy, 30(3), 753-757. https://doi.org/10.1007/s00167-022-06896-6 10.1007/s00167-022-06896-635106604
- Lin, G.F., Chang, M.J., Huang, Y.C., and Ho, J.Y., 2017, Assessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map, support vector machine, and logistic regression, Engineering Geology, 224, 62-74. https://doi.org/10.1016/j.enggeo.2017.05.009 10.1016/j.enggeo.2017.05.009
- Lovelace, R., Nowosad, J., and Muenchow, J., 2019, Geocomputation with R, Boca Raton: CRC Press. https://doi.org/10.1201/9780203730058 10.1201/9780203730058
- Lundberg, S. and Lee, S.I., 2017, A Unified Approach to Interpreting Model Predictions, Advances in Neural Information Processing Systems, 30. https://doi.org/10.48550/arXiv.1705.07874 10.48550/arXiv.1705.07874
- Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.I., 2019, Explainable AI for Trees: From Local Explanations to Global Understanding, arXiv preprint, arXiv:1905.04610. https://doi.org/10.48550/arXiv.1905.04610 10.1038/s42256-019-0138-932607472PMC7326367
- Mejía-Navarro, M., Wohl, E.E., and Oaks, S.D., 1994, Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado, in Morisawa, M., eds., Geomorphology and Natural Hazards, 331-354, New York: Elsevier. https://doi.org/10.1016/B978-0-444-82012-9.50025-6 10.1016/B978-0-444-82012-9.50025-6
- Neuland, H., 1976, A prediction model of landslips, Catena, 3(2), 215-230. https://doi.org/10.1016/0341-8162(76)90011-4 10.1016/0341-8162(76)90011-4
- Nhu, V.H., Zandi, D., Shahabi, H., Chapi, K., Shirzadi, A., Al-Ansari, N., Singh, S.K., Dou, J., and Nguyen, H., 2020, Comparison of Support Vector Machine, Bayesian Logistic Regression, and Alternating Decision Tree Algorithms for Shallow Landslide Susceptibility Mapping along a Mountainous Road in the West of Iran, Applied Sciences, 10(15), 5047. https://doi.org/10.3390/app10155047 10.3390/app10155047
- Niraj, K.C., Gupta, S.K., and Shukla, D.P., 2022, Kotrupi landslide deformation study in non-urban area using DInSAR and MTInSAR techniques on Sentinel-1 SAR data, Advances in Space Research, 70(12), 3878-3891. https://doi.org/10.1016/j.asr.2021.11.042 10.1016/j.asr.2021.11.042
- Macchiarulo, V., Milillo, P., DeJong, M.J., González Martí, J., Sánchez, J., and Giardina, G., 2021, Integrated InSAR monitoring and structural assessment of tunnelling-induced building deformations, Structural Control and Health Monitoring, 28(9), e2781. https://doi.org/10.1002/stc.2781 10.1002/stc.2781
- Mahoney M.J., Johnson, L.K., Silge, J., Frick, H., Kuhn, M., and Beier C. M., 2023, Assessing the performance of spatial cross-validation approaches for models of spatially structured data, arXiv preprint, arXiv.2303.07334. https://doi.org/10.48550/arXiv.2303.07334 10.48550/arXiv.2303.07334
- Molnar, C., 2020, Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. https://christophm.github.io/interpretable-ml-book/
- Ohlmacher, G.C. and Davis, J.C., 2003, Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA, Engineering Geology, 69(3-4), 331-343. https://doi.org/10.1016/S0013-7952(03)00069-3 10.1016/S0013-7952(03)00069-3
- Pradhan, B., 2013, A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS, Computers & Geosciences, 51, 350-365. https://doi.org/10.1016/j.cageo.2012.08.023 10.1016/j.cageo.2012.08.023
- Pradhan, B., Dikshit, A., Lee, S., and Kim, H., 2023, An explainable AI (XAI) model for landslide susceptibility modeling, Applied Soft Computing, 142, 110324. https://doi.org/10.1016/j.asoc.2023.110324 10.1016/j.asoc.2023.110324
- Queinnec, M., White, J.C., and Coops, N.C., 2021, Comparing airborne and spaceborne photon-counting LiDAR canopy structural estimates across different boreal forest types, Remote Sensing of Environment, 262, 112510. https://doi.org/10.1016/j.rse.2021.112510 10.1016/j.rse.2021.112510
- Ray, R.L. and Jacobs, J.M., 2007, Relationships among remotely sensed soil moisture, precipitation and landslide events, Natural Hazards, 43, 211-222. https://doi.org/10.1007/s11069-006-9095-9 10.1007/s11069-006-9095-9
- Reichenbach, P., Rossi, M., Malamud, B.D., Mihir, M., and Guzzetti, F., 2018, A review of statistically-based landslide susceptibility models, Earth-Science Reviews, 180, 60-91. https://doi.org/10.1016/j.earscirev.2018.03.001 10.1016/j.earscirev.2018.03.001
- Roussel, C. and Böhm, K., 2023, Geospatial xai: A review, ISPRS International Journal of Geo-Information, 12(9), 355. https://doi.org/10.3390/ijgi12090355 10.3390/ijgi12090355
- Sahin, E.K., 2022, Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping, Geocarto International, 37(9), 2441-2465. https://doi.org/10.1080/10106049.2020.1831623 10.1080/10106049.2020.1831623
- Shao, X. and Xu, C., 2022, Earthquake-induced landslides susceptibility assessment: A review of the state-of-the-art. Natural Hazards Research, 2(3), 172-182. https://doi.org/10.1016/j.nhres.2022.03.002 10.1016/j.nhres.2022.03.002
- Shapley, L., 1953, A value for n-person games, in Kuhn, H.W. and Tucker, A.W., eds., Contributions to the Theory of Games, Princeton: Princeton University Press, AM-28(2), 307-317. https://doi.org/10.1515/9781400881970-018 10.1515/9781400881970-018
- Shwartz-Ziv, R. and Armon, A., 2022, Tabular data: Deep learning is not all you need, Information Fusion, 81, 84-90. https://doi.org/10.1016/j.inffus.2021.11.011 10.1016/j.inffus.2021.11.011
- Singh, A., Chhetri, N.K., Gupta, S.K., and Shukla, D.P., 2023, Strategies for sampling pseudo-absences of landslide locations for landslide susceptibility mapping in complex mountainous terrain of Northwest Himalaya, Bulletin of Engineering Geology and the Environment, 82(8), 1-21. https://doi.org/10.1007/s10064-023-03333-x 10.1007/s10064-023-03333-x
- Taalab, K., Cheng, T., and Zhang, Y., 2018, Mapping landslide susceptibility and types using Random Forest, Big Earth Data, 2(2), 159-178. https://doi.org/10.1080/20964471.2018.1472392 10.1080/20964471.2018.1472392
- Tang, R.X., Yan, E.C., Wen, T., Yin, X.M., and Tang, W., 2021, Comparison of logistic regression, information value, and comprehensive evaluating model for landslide susceptibility mapping, Sustainability, 13(7), 3803. https://doi.org/10.3390/su13073803 10.3390/su13073803
- Temme, A.J., 2021, Relations between soil development and landslides, in Hunt, A.G., Egli, M. and Faybishenko, B. eds., Hydrogeology, Chemical Weathering, and Soil Formation, Washington D.C.: American Geophysical Union, 177-185. https://doi.org/10.1002/9781119563952.ch9 10.1002/9781119563952.ch9
- Tien Bui, D., Pradhan, B., Lofman, O., and Revhaug, I., 2012, Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes Models, Mathematical problems in Engineering, 2012, 1-26. https://doi.org/10.1155/2012/974638 10.1155/2012/974638
- Tseng, C.W., Song, C.E., Wang, S.F., Chen, Y.C., Tu, J.Y., Yang, C.J., and Chuang, C.W., 2020, Application of high-resolution radar rain data to the predictive analysis of landslide susceptibility under climate change in the Laonong Watershed, Taiwan, Remote Sensing, 12(23), 3855. https://doi.org/10.3390/rs12233855 10.3390/rs12233855
- Tyagi, A., Tiwari, R.K., and James, N., 2022, A review on spatial, temporal and magnitude prediction of landslide hazard. Journal of Asian Earth Sciences: X, 7, 100099. https://doi.org/10.1016/j.jaesx.2022.100099 10.1016/j.jaesx.2022.100099
- Varnes, D.J., 1958, Landslide types and processes, in Eckel, E., eds., Landslides and engineering practice, 29th Edition, National Academy of Sciences-National Research Council, 20-47.
- Verworn, A. and Haberlandt, U., 2011, Spatial interpolation of hourly rainfall-effect of additional information, variogram inference and storm properties, Hydrology and Earth System Sciences, 15, 569-584. https://doi.org/10.5194/hess-15-569-2011 10.5194/hess-15-569-2011
- Yao, J., Yao, X., Zhao, Z., and Liu, X., 2023, Performance comparison of landslide susceptibility mapping under multiple machine-learning based models considering InSAR deformation: a case study of the upper Jinsha River, Geomatics, Natural Hazards and Risk, 14(1), 2212833. https://doi.org/10.1080/19475705.2023.2212833 10.1080/19475705.2023.2212833
- Yesilnacar, E. and Topal, T., 2005, Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey), Engineering Geology, 79, 251-266. https://doi.org/10.1016/j.enggeo.2005.02.002 10.1016/j.enggeo.2005.02.002
- Zhang, J., Ma, X., Zhang, J., Sun, D., Zhou, X., Mi, C., and Wen, H., 2023, Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model, Journal of Environmental Management, 332, 117357. https://doi.org/10.1016/j.jenvman.2023.117357 10.1016/j.jenvman.2023.11735736731409
- Zhang, X., Wu, B., Ponce-Campos, G.E., Zhang, M., Chang, S., and Tian, F., 2018, Mapping up-to-date paddy rice extent at 10 m resolution in china through the integration of optical and synthetic aperture radar images, Remote Sensing, 10(8), 1200. https://doi.org/10.3390/rs10081200 10.3390/rs10081200
- Zhao, C. and Lu, Z., 2018, Remote Sensing of Landslides - A Review, Remote Sensing, 10(2), 279. https://doi.org/10.3390/rs10020279 10.3390/rs10020279
- Zhou, X., Wen, H., Li, Z., Zhang, H., and Zhang, W., 2022, An interpretable model for the susceptibility of rainfall-induced shallow landslides based on SHAP and XGBoost, Geocarto International, 37(26), 13419-13450. https://doi.org/10.1080/10106049.2022.2076928 10.1080/10106049.2022.2076928
- 기상청 기상자료개방포털, “지역별 평균 강수량 계급일수”, https://data.kma.go.kr/climate/rainySeason/selectRainySeasonList.do (2023.7 검색)
- Publisher :The Korean Cartographic Association
- Publisher(Ko) :한국지도학회
- Journal Title :Journal of the Korean Cartographic Association
- Journal Title(Ko) :한국지도학회지
- Volume : 24
- No :2
- Pages :89~111
- DOI :https://doi.org/10.16879/jkca.2024.24.2.089